top of page

Filoptohos of Agia Marina Church

Public·26 friends
Naum Aksenov
Naum Aksenov

Coastline Paradox

The coastline paradox is the counterintuitive observation that the coastline of a landmass does not have a well-defined length. This results from the fractal curve-like properties of coastlines; i.e., the fact that a coastline typically has a fractal dimension. Although the "paradox of length" was previously noted by Hugo Steinhaus,[1] the first systematic study of this phenomenon was by Lewis Fry Richardson,[2][3] and it was expanded upon by Benoit Mandelbrot.[4][5]

Coastline Paradox

The measured length of the coastline depends on the method used to measure it and the degree of cartographic generalization. Since a landmass has features at all scales, from hundreds of kilometers in size to tiny fractions of a millimeter and below, there is no obvious size of the smallest feature that should be taken into consideration when measuring, and hence no single well-defined perimeter to the landmass. Various approximations exist when specific assumptions are made about minimum feature size.

Shortly before 1951, Lewis Fry Richardson, in researching the possible effect of border lengths on the probability of war, noticed that the Portuguese reported their measured border with Spain to be 987 km, but the Spanish reported it as 1214 km. This was the beginning of the coastline problem, which is a mathematical uncertainty inherent in the measurement of boundaries that are irregular.[8]

More than a decade after Richardson completed his work, Benoit Mandelbrot developed a new branch of mathematics, fractal geometry, to describe just such non-rectifiable complexes in nature as the infinite coastline.[9] His own definition of the new figure serving as the basis for his study is:[10]

A key property of some fractals is self-similarity; that is, at any scale the same general configuration appears. A coastline is perceived as bays alternating with promontories. In the hypothetical situation that a given coastline has this property of self-similarity, then no matter how great any one small section of coastline is magnified, a similar pattern of smaller bays and promontories superimposed on larger bays and promontories appears, right down to the grains of sand. At that scale the coastline appears as a momentarily shifting, potentially infinitely long thread with a stochastic arrangement of bays and promontories formed from the small objects at hand. In such an environment (as opposed to smooth curves) Mandelbrot asserts[9] "coastline length turns out to be an elusive notion that slips between the fingers of those who want to grasp it".

There are different kinds of fractals. A coastline with the stated property is in "a first category of fractals, namely curves whose fractal dimension is greater than 1". That last statement represents an extension by Mandelbrot of Richardson's thought. Mandelbrot's statement of the Richardson effect is:[11]

where L, coastline length, a function of the measurement unit ε, is approximated by the expression. F is a constant, and D is a parameter that Richardson found depended on the coastline approximated by L. He gave no theoretical explanation, but Mandelbrot identified D with a non-integer form of the Hausdorff dimension, later the fractal dimension. Rearranging the expression yields

So what is the Coastline Paradox? It is a paradox that occurs when measuring a coastline that causes the total length of the coastline to increase each time you measure it with a smaller unit of measurement, due to the extra features that can be measured.

So the next time you are tasked with measuring the length of a coastline, river, or other lengthy feature, consider the resolution of the GIS data you need to use. As discussed in an earlier article, larger scale GIS data sets tend to show more detail than smaller scale data.

The coastline paradox arises from the difficulty of measuring shapes with complicated edges such as those of countries like the Britain. As we try and be ever more accurate in our measurement of the British coastline, we get an ever larger answer! We can see this demonstrated below:

This first map represents an approximation of the British coastline with each line representing 200km. With this scale we arrive at an estimation of around 2400km. Yet if we take each line with length 50km we get the following:

We can see that countries with steeper slopes (i.e those whose coastline greatly increases with ever smaller measuring scales) will have a more jagged coastline and so can be regarded as having a higher dimension. Mandelbrot assigned the coastline dimension as related to the gradient of the slope. 041b061a72


Welcome to the group! The Filoptohos is a group whose main a...
Group Page: Groups_SingleGroup
bottom of page